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Appendix 1. Proof

In this appendix, we provide a proof for the validity of NCT for the tests on invariance of
global strength, network structure, and edge strength. The proof is based on the idea that
the resampling test is equivalent to the test based on the normal approximation, as shown
by Van der Vaart (1998). In a resampling test, the critical value is estimated (or exact for
small samples) and converges to the critical value of a corresponding parametric test. Con-
sequently, only if a corresponding parametric test can be constructed for a hypothesis, an
adequate resampling test can be constructed for it. The proof works for generalized linear
models (i.e., exponential family models) and is, therefore, not limited to normally distributed
random variables. The proof requires several assumptions, which are summarized at the end

of the proof.

Proof. First, we show that the network parameters converge to a normal distribution (see
assumption 1). Then, we show that a parametric test can be constructed and, hence, that a
resampling test performs adequately.

We start with the linear regression model, which is at the basis of the network estimation
methods in the accompanying paper. We set some X; to be Y and then use regression on
the remaining variables X; for all j # ¢, which are collected in the matrix X. The total

number of variables is p and ¢ = p — 1. The regression is then
Y = Xw; +e,

where X is called the design matrix and has dimensions n X ¢ (i.e., number of observations
times the number of variables minus the variable that has been assigned Y'), w; is the true

coefficient corresponding to X; = Y and e is the error. X is assumed to be independent

2

2 (assumption

across the ¢ variables and normally distributed with mean 0 and variance o



2).

Knight and Fu (2000) show that when the design matrix is non-singular (i.e., it is a full
rank design matrix X in a linear regression model and n > ¢) and the lasso penalty A grows
at the same rate as /n (i.e., \/y/n — X, which is finite; assumption 3), then the lasso
estimator converges to a (biased) normal distribution. Tibshirani (1996) shows that in this
full rank case we can approximate the lasso with the ridge estimator and hence the bias is

approximately (I — A)w;, where A is defined as

A=(XTX+AW )X

and W is diagonal with elements |w;;|, for j # . If A = 0, we obtain the ordinary least
squares estimate. Tibshirani (1996) also uses the ridge estimator to obtain approximate

standard errors. The covariance matrix using this approximation is given by

Y=XTX +AW)IXTX(XTX + AW )7

where 62 is the estimate of the residual variance. The standard errors are obtained by taking
the square root of the diagonal elements of ¥ (note that the standard error is 0 when w;; is 0;
we do not mean for this approximation to be used in practice, we use it here merely for the
proof). Consequently, using both results of Knight and Fu (2000), and Tibshirani (1996),
and the assumption that for each variable the mean and variance are finite, we obtain that,

approximately, the lasso estimator is distributed as

This shows that for linear regression we obtain an approximate normal distribution whenever

n>q.



We can extend this result to generalized linear models (e.g., to logistic regression models
for binary data) in the following way. Following Van de Geer et al. (2014), we can replace X
from linear regression with the second-order derivative of the loss function L with respect to
the parameters, denoted L (a ¢ X ¢ matrix). By additionally assuming that this second-order
derivative L exists, we can plug-in L for X "X above and obtain a similar approximation for
the normal distribution.

According to the resampling method, we repeatedly resample two data sets from the
pooled data (without replacement), matching the original sample sizes. Estimates based on
resampled data are indicated by an asterisk: &' and @*

For global strength, the test statistic is defined as

et |ZZ\w = 1@ DI,

i=1 5>t

where @!* is the vector with p(p — 1)/2 unique edge estimates of network 1, and the sum
is taken of all p(p — 1)/2 edges in the network. Since @ (using the ridge approximation) is
a linear function of the data Y, we can immediately apply Theorem 13.25 of van der Vaart
(1998). This requires (a) the the variance to be finite, and (b) ny/N to converge to some
constant in (0, 1) as n; and ny become infinitely large (assumption 4). The first requirement
is reasonable when variables are used whose distribution belong to the exponential family.
The second implies that we cannot have group sizes that are extremely different. Given these
assumptions, the critical value of the resampling statistic converges to the one of the normal
distribution used for the parametric test. As a corollary, we immediately obtain that the
edge test also has a parametric counterpart to the resampling test and, hence, is also valid.

For the test on invariant network structure, we use the maximum of all differences between



corresponding estimates of both networks, i.e.,

M(&h &%) = max |@f — 2.
1<i<p Y J
J<i

For the resampling test to work, we use the fact that this is an extreme value statistic.
Accordingly, the generalized extreme value theorem for standardized random variables z =
(r — p) /o, with finite mean p and variance o, shows that the distribution of the maximum
statistic converges to one of three possible distributions: the Gumbel, Fréchet or Weibull
distribution (see, e.g., Coles et al., 2001). Note that convergence in distribution is defined
here in terms of the size of the network, so that the approximation is better when the network
is larger.

Additionally, because the edges (@;;) are dependent, we require the assumption that the
dependence is limited in the sense that some edges can be correlated but the correlation
should approach zero for others (i.e., the correlation p; tends to 0 at least at the rate of
1/logi; DasGupta, 2008, Theorem 8.16; assumption 5).

If the dependence of the estimates is limited in the correlation among the edge estimates,
then we can apply Theorem 5.1 from Coles et al. (2001), where the maximum of the esti-
mates will converge to the Gumbel distribution (in this case because the distribution of the
estimates is approximately normal). For the Gumbel distribution we can obtain the critical
value and hence for the resampling statistic we obtain a critical value that converges to the
parametric one of the Gumbel distribution (see, e.g., DasGupta, 2008, Theorem 31.2 for a
general result on this).

To conclude, there are five assumptions for NCT. Four assumptions are required for
all tests (i.e., global strength, individual edge strength, and network structure invariance).
Additionally, a fifth assumption is required for the test on network structure invariance. The

assumptions for all three test are



1. The matrix XX or the second-order derivative of the loss function L is non-singular

(i.e., no multi-collinearity and more observations then variables).
2. The mean y and variance o2 of each of the p variables are finite.

3. The lasso penalty A grows at the same rate as /n, i.e., \/y/n — Ao as n — oo (i.e., A

can become larger with large samples but it cannot grow faster).

4. The group sizes n; and ny cannot be too unbalanced, i.e., ny /N converges to a constant

in (0,1), where N = ny + ns.

In addition to these assumptions, the test on invariance of network structure requires the

following.

5. The correlation function p;logi — 0 as i — oo (i.e., the edge strengths can be corre-

lated to some extent but should go to zero for others).
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Appendix 2. Figures

Figure S1

Performance of NCT with density = 0.3, y = 0.25 and y = 0.50 (main analysis)
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Note. Simulation study results for tests on invariance of (a) network structure, (b) an
individual edge, and (c) global strength test with continuous data (main analysis). The x-axes
display sample size, whereas the y-axes display proportion of p-values < 0.05. All three tests
were applied to simulated data under the null hypothesis of no difference (Hy; yellow) and
under the alternative hypotheses that there is a difference to a certain degree (H;, blue; and
H,, red). Data were simulated from networks with density 0.3 and different numbers of
variables (10: dotted lines, 20: dashed lines, 30: solid lines). The data were simulated with

equal sample sizes.



Figure S2
Performance of NCT with density = 0.3, y = 0, and unequal samp
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Note. Simulation study results for tests on invariance of (a) network structure, (b) an
individual edge, and (c) global strength test with continuous data (main analysis). All three
tests were applied to simulated data under the null hypothesis of no difference (H,, yellow)
and under the alternative hypotheses that there is a difference to a certain degree (H;, blue;
and H,, red). The x-axes display sample size, whereas the y-axes display proportion of p-
values < 0.05. Data were simulated with unequal sample sizes: the largest sample was
generated with either network G; (left panels) and were 1.5 times larger, or the largest sample
was generated with network G, (right panels). Data were simulated from networks with
different numbers of variables (10: dotted lines, 20: dashed lines, 30: solid lines). The
networks all had density = 0.3 and the networks were all estimated with hyperparameter y =

0.



Figure S3

Performance of NCT with density = 0.5 and y = 0 (main analysis)
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Note. Simulation study results for tests on invariance of (a) network structure, (b) an

individual edge, and (c) global strength test with continuous data (main analysis). The x-axes



display sample size, whereas the y-axes display proportion of p-values < 0.05. All three tests
were applied to simulated data under the null hypothesis of no difference (H,, yellow) and
under the alternative hypotheses that there is a difference to a certain degree (H;, blue; and
H,, red). Data were simulated from networks with density 0.5 and different numbers of
variables (10: dotted lines, 20: dashed lines, 30: solid lines). The networks were estimated

with hyperparameter y = 0 and data were simulated with equal sample sizes.



Figure S4

Performance of NCT with binary data with equal and unequal groups (smaller setup)
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Note. Simulation study results of the tests on invariance of (a) network structure, (b) an
individual edge, and (c) global strength test with binary data (smaller setup). The x-axes
display sample size, whereas the y-axes displays proportion of p-values < .05. All three tests

were applied to simulated data under the null hypothesis of no difference (H,, yellow) and



under the alternative hypotheses that there is a difference to a certain degree (H;, blue; and
H,, red). Data were simulated from networks with density 0.05 (left panels), 0.1 (middle

panels), and 0.2 (right panels), and 36 variables. The data were simulated with equal (solid
line) and unequal sample sizes. In the unequal condition, the largest sample was generated

with either network G; (dashed line), or with network G, (dotted line).



Figure S5

Performance of NCT with settings corresponding to empirical example data
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Note. Simulation study results for tests on invariance of an individual edge with continuous
data and settings close to the empirical networks: number of nodes = 10, density of G; = 0.5,
sample sizes = 500/1000, and hyperparameter y = 0.5. The test was applied to simulated data
under the null hypothesis of no difference (H,, yellow) and under the alternative hypotheses
that there is a difference to a certain degree (H;, blue; and H,, red). The x-axes displays the
two conditions of unequal sample sizes: 1) the data generated with network G;was 2 times
larger than that with network G, (G,larger), and 2) the data generated with network G,was 2

times larger than that with network G; (G, larger). The y-axes display proportion of p-values

<0.05.



