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Appendix 1. Proof

In this appendix, we provide a proof for the validity of NCT for the tests on invariance of

global strength, network structure, and edge strength. The proof is based on the idea that

the resampling test is equivalent to the test based on the normal approximation, as shown

by Van der Vaart (1998). In a resampling test, the critical value is estimated (or exact for

small samples) and converges to the critical value of a corresponding parametric test. Con-

sequently, only if a corresponding parametric test can be constructed for a hypothesis, an

adequate resampling test can be constructed for it. The proof works for generalized linear

models (i.e., exponential family models) and is, therefore, not limited to normally distributed

random variables. The proof requires several assumptions, which are summarized at the end

of the proof.

Proof. First, we show that the network parameters converge to a normal distribution (see

assumption 1). Then, we show that a parametric test can be constructed and, hence, that a

resampling test performs adequately.

We start with the linear regression model, which is at the basis of the network estimation

methods in the accompanying paper. We set some Xi to be Y and then use regression on

the remaining variables Xj for all j 6= i, which are collected in the matrix X. The total

number of variables is p and q = p� 1. The regression is then

Y = X!i + e,

where X is called the design matrix and has dimensions n⇥ q (i.e., number of observations

times the number of variables minus the variable that has been assigned Y ), !i is the true

coe�cient corresponding to Xi = Y and e is the error. X is assumed to be independent

across the q variables and normally distributed with mean 0 and variance �2
e (assumption
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2).

Knight and Fu (2000) show that when the design matrix is non-singular (i.e., it is a full

rank design matrix X in a linear regression model and n > q) and the lasso penalty � grows

at the same rate as
p
n (i.e., �/

p
n ! �0, which is finite; assumption 3), then the lasso

estimator converges to a (biased) normal distribution. Tibshirani (1996) shows that in this

full rank case we can approximate the lasso with the ridge estimator and hence the bias is

approximately (I ��)!i, where � is defined as

� = (X>X + �W�
)
�1X>,

and W is diagonal with elements |!̂ij|, for j 6= i. If � = 0, we obtain the ordinary least

squares estimate. Tibshirani (1996) also uses the ridge estimator to obtain approximate

standard errors. The covariance matrix using this approximation is given by

⌃ = �̂2
(X>X + �W�

)
�1X>X(X>X + �W�

)
�1,

where �̂2
is the estimate of the residual variance. The standard errors are obtained by taking

the square root of the diagonal elements of ⌃ (note that the standard error is 0 when !̂ij is 0;

we do not mean for this approximation to be used in practice, we use it here merely for the

proof). Consequently, using both results of Knight and Fu (2000), and Tibshirani (1996),

and the assumption that for each variable the mean and variance are finite, we obtain that,

approximately, the lasso estimator is distributed as

!̂i ⇠ N(�!i,⌃).

This shows that for linear regression we obtain an approximate normal distribution whenever

n > q.
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We can extend this result to generalized linear models (e.g., to logistic regression models

for binary data) in the following way. Following Van de Geer et al. (2014), we can replace X

from linear regression with the second-order derivative of the loss function L with respect to

the parameters, denoted L̈ (a q⇥q matrix). By additionally assuming that this second-order

derivative L̈ exists, we can plug-in L̈ for X>X above and obtain a similar approximation for

the normal distribution.

According to the resampling method, we repeatedly resample two data sets from the

pooled data (without replacement), matching the original sample sizes. Estimates based on

resampled data are indicated by an asterisk: !̂1⇤
and !̂2⇤

.

For global strength, the test statistic is defined as

S(!̂1⇤, !̂2⇤
) = |

pX

i=1

X

j>i

(|!̂1⇤
ij |� |!̂2⇤

ij |)|,

where !̂1⇤
is the vector with p(p � 1)/2 unique edge estimates of network 1, and the sum

is taken of all p(p � 1)/2 edges in the network. Since !̂ (using the ridge approximation) is

a linear function of the data Y , we can immediately apply Theorem 13.25 of van der Vaart

(1998). This requires (a) the the variance to be finite, and (b) n1/N to converge to some

constant in (0, 1) as n1 and n2 become infinitely large (assumption 4). The first requirement

is reasonable when variables are used whose distribution belong to the exponential family.

The second implies that we cannot have group sizes that are extremely di↵erent. Given these

assumptions, the critical value of the resampling statistic converges to the one of the normal

distribution used for the parametric test. As a corollary, we immediately obtain that the

edge test also has a parametric counterpart to the resampling test and, hence, is also valid.

For the test on invariant network structure, we use the maximum of all di↵erences between
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corresponding estimates of both networks, i.e.,

M(!̂1, !̂2
) = max

1ip
j<i

|!̂1
ij � !̂2

ij|.

For the resampling test to work, we use the fact that this is an extreme value statistic.

Accordingly, the generalized extreme value theorem for standardized random variables z =

(x� µ)/�, with finite mean µ and variance �2
, shows that the distribution of the maximum

statistic converges to one of three possible distributions: the Gumbel, Fréchet or Weibull

distribution (see, e.g., Coles et al., 2001). Note that convergence in distribution is defined

here in terms of the size of the network, so that the approximation is better when the network

is larger.

Additionally, because the edges (!̂ij) are dependent, we require the assumption that the

dependence is limited in the sense that some edges can be correlated but the correlation

should approach zero for others (i.e., the correlation ⇢i tends to 0 at least at the rate of

1/ log i; DasGupta, 2008, Theorem 8.16; assumption 5).

If the dependence of the estimates is limited in the correlation among the edge estimates,

then we can apply Theorem 5.1 from Coles et al. (2001), where the maximum of the esti-

mates will converge to the Gumbel distribution (in this case because the distribution of the

estimates is approximately normal). For the Gumbel distribution we can obtain the critical

value and hence for the resampling statistic we obtain a critical value that converges to the

parametric one of the Gumbel distribution (see, e.g., DasGupta, 2008, Theorem 31.2 for a

general result on this).

To conclude, there are five assumptions for NCT. Four assumptions are required for

all tests (i.e., global strength, individual edge strength, and network structure invariance).

Additionally, a fifth assumption is required for the test on network structure invariance. The

assumptions for all three test are
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1. The matrix X>X or the second-order derivative of the loss function L̈ is non-singular

(i.e., no multi-collinearity and more observations then variables).

2. The mean µ and variance �2
of each of the p variables are finite.

3. The lasso penalty � grows at the same rate as
p
n, i.e., �/

p
n ! �0 as n ! 1 (i.e., �

can become larger with large samples but it cannot grow faster).

4. The group sizes n1 and n2 cannot be too unbalanced, i.e., n1/N converges to a constant

in (0, 1), where N = n1 + n2.

In addition to these assumptions, the test on invariance of network structure requires the

following.

5. The correlation function ⇢i log i ! 0 as i ! 1 (i.e., the edge strengths can be corre-

lated to some extent but should go to zero for others).

⇤
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Appendix 2. Figures 

 

Figure S1 

Performance of NCT with density = 0.3, ! = 0.25 and ! = 0.50 (main analysis) 
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Note. Simulation study results for tests on invariance of (a) network structure, (b) an 

individual edge, and (c) global strength test with continuous data (main analysis). The x-axes 

display sample size, whereas the y-axes display proportion of p-values < 0.05. All three tests 

were applied to simulated data under the null hypothesis of no difference ("!; yellow) and 

under the alternative hypotheses that there is a difference to a certain degree ("", blue; and 

"#, red). Data were simulated from networks with density 0.3 and different numbers of 

variables (10: dotted lines, 20: dashed lines, 30: solid lines). The data were simulated with 

equal sample sizes. 

 



Figure S2 

Performance of NCT with density = 0.3, ! = 0, and unequal sample sizes (main analysis) 
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Note. Simulation study results for tests on invariance of (a) network structure, (b) an 

individual edge, and (c) global strength test with continuous data (main analysis). All three 

tests were applied to simulated data under the null hypothesis of no difference ("!, yellow) 

and under the alternative hypotheses that there is a difference to a certain degree ("", blue; 

and "#, red).  The x-axes display sample size, whereas the y-axes display proportion of p-

values < 0.05. Data were simulated with unequal sample sizes: the largest sample was 

generated with either network #" (left panels) and were 1.5 times larger, or the largest sample 

was generated with network ## (right panels). Data were simulated from networks with 

different numbers of variables (10: dotted lines, 20: dashed lines, 30: solid lines). The 

networks all had density = 0.3 and the networks were all estimated with hyperparameter ! = 

0.  



Figure S3 

Performance of NCT with density = 0.5 and ! = 0 (main analysis) 

 

Note. Simulation study results for tests on invariance of (a) network structure, (b) an 

individual edge, and (c) global strength test with continuous data (main analysis). The x-axes 
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display sample size, whereas the y-axes display proportion of p-values < 0.05. All three tests 

were applied to simulated data under the null hypothesis of no difference ("!, yellow) and 

under the alternative hypotheses that there is a difference to a certain degree ("", blue; and 

"#, red). Data were simulated from networks with density 0.5 and different numbers of 

variables (10: dotted lines, 20: dashed lines, 30: solid lines). The networks were estimated 

with hyperparameter ! = 0 and data were simulated with equal sample sizes. 



 
Figure S4 

Performance of NCT with binary data with equal and unequal groups (smaller setup) 

 

Note. Simulation study results of the tests on invariance of (a) network structure, (b) an 

individual edge, and (c) global strength test with binary data (smaller setup). The x-axes 

display sample size, whereas the y-axes displays proportion of p-values <  .05. All three tests 

were applied to simulated data under the null hypothesis of no difference ("!, yellow) and 
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under the alternative hypotheses that there is a difference to a certain degree ("", blue; and 

"#, red). Data were simulated from networks with density 0.05 (left panels), 0.1 (middle 

panels), and 0.2 (right panels), and 36 variables. The data were simulated with equal (solid 

line) and unequal sample sizes. In the unequal condition, the largest sample was generated 

with either network #" (dashed line), or with network ## (dotted line). 

 



 
Figure S5 

Performance of NCT with settings corresponding to empirical example data  

 

Note. Simulation study results for tests on invariance of an individual edge with continuous 

data and settings close to the empirical networks: number of nodes = 10, density of #" = 0.5, 

sample sizes = 500/1000, and hyperparameter ! = 0.5. The test was applied to simulated data 

under the null hypothesis of no difference ("!, yellow) and under the alternative hypotheses 

that there is a difference to a certain degree ("", blue; and "#, red). The x-axes displays the 

two conditions of unequal sample sizes: 1) the data generated with network #"was 2 times 

larger than that with network ## (#"larger), and 2) the data generated with network ##was 2 

times larger than that with network #" (## larger). The y-axes display proportion of p-values 

< 0.05.  
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