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Day 3 
From empirical data to a graphical model

1



Sherlock - the pill game



Sherlock - the pill game
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What is the network structure of 
psychological phenomena?

…a big challenge!



Markov Random Field (MRF) Bayesian Network (BN)

Undirected graph Directed acyclic graph

Graphical models

The bigger picture
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Wikipedia:

A graphical model or probabilistic graphical 
model (PGM) is a probabilistic model for which a 
graph expresses the conditional dependence 
structure between random variables.

https://en.wikipedia.org/wiki/Probabilistic_model
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Random_variable


• The variables (e.g., symptoms) 
have pairwise/direct (causal) 
relationships 

• An undirected edge in a MRF 
can be viewed as a potential 
causal pathway 

• A missing edge means that 
variables are conditionally 
independent, i.e., independent 
given all other variables:

Markov Random Field (MRF) Bayesian Network (BN)

Undirected graph Directed acyclic graph

Graphical models

The bigger picture

5

Wikipedia:

A graphical model or probabilistic graphical 
model (PGM) is a probabilistic model for which a 
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Graphical models
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Markov Random Field (MRF)

Undirected graph

Ising Model 

– for	binary	data	
– cross-sectional	
– estimation	based	on	multiple	

logistic	regression	models

Gaussian Graphical Model 
(GGM) 
– for	normally	distributed	data	
– cross-sectional	
– estimation	based	on	multiple	linear	

regression	models	(or	inverse	covariance	
matrix)



1. The basics: Conditional independence

What does it mean to say that two symptoms ar (not) 
connected? 

2. Estimating graphical models with L1 regularization 

3. Recent advancements 
Network stability 

Network comparison

Today’s program
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What is a network?

A set of nodes and edges 

• A node is an entity  
train stations 
people 
symptoms 

• An edge is a connection between nodes 
railways 
friendships 
social interaction
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How to estimate a network?
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A connection between symptoms 
can be based on: 

correlation (direct or indirect relationship) 
partial correlation (direct relationship) 
regularized relationship (afternoon) 
causal relationship (tomorrow)



How to estimate a network?
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• Another familiar analysis to establish relationships 
among variables
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• Another familiar analysis to establish relationships 
among variables
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y = τ1 + β12X2 + β13X3 + … + ε
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How to estimate a network?

10

A B



• Another familiar analysis to establish relationships 
among variables

regression
y = τ1 + β12X2 + β13X3 + … + ε

• If true generating mechanism is 
• Will A predict B? B = τ + βA + ε

How to estimate a network?

10

A B



• Another familiar analysis to establish relationships 
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• Another familiar analysis to establish relationships 
among variables

regression
y = τ1 + β12X2 + β13X3 + … + ε

• If true generating mechanism is 
• Will A predict B? B = τ + βA + ε

Yes
• Will B predict A? A = τ + βB + ε

Yes!
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• Another familiar analysis to establish relationships 
among variables

regression
y = τ1 + β12X2 + β13X3 + … + ε

• If true generating mechanism is 
• Will A predict B? B = τ + βA + ε

Yes
• Will B predict A? A = τ + βB + ε

Yes!
• Because we have cross sectional data, we don’t 

know the direction. Therefore, often undirected 
networks. 

A B

How to estimate a network?

10

A B



• y = τ1 + β12X2 + β13X3 + … ε 
• β12: slope, regression coefficient 
• relates to 

correlation 
partial correlation 
explained variance 
conditional independence 

How to estimate a network?
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What is a network?
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Relationships among variables

• y = τ1 + β12X2 + β13X3 + … ε 
• β12: slope, regression coefficient 
• relates to 

correlation 
partial correlation 
explained variance 
conditional independence 

• These concepts are all somehow related and 
understanding this is essential when working 
with graphical models 

• What does it mean to say that two 
symptoms are connected in a network?

13



Relationships among variables

Let’s start with correlations 
• Are X1 and X2 correlated?

Uncorrelated 

Strongly correlated

X1 X2

X1 X2

X1X2

X1 X2

X1 X2

X1 X2

•

•

•

•

•

X1 X2

X1 X2

14



Relationships among variables
Think of correlations as varying connection strength or as 
shared variance

Uncorrelated 

Strongly correlated

X1 X2

X1 X2

X1X2

X1 X2

X1 X2

X1 X2

•

•

•

•

•

X1 X2

X1 X2

15



Relationships among variables

Let’s start with correlations 
• Are X1 and X2 correlated? 

• Say, r = .3 

• This means that 9% of the variance in 
X1 is explained by the variance in X2 

• Note: .09 is the R2 that you get from 
regression!

Uncorrelated 

Strongly correlated

X1 X2

X1 X2

X1X2

X1 X2

X1 X2

X1 X2

•

•

•

•

•

X1 X2

X1 X2
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Relationships among variables
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Y

.80

Example: two events at party 
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Relationships among variables
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Example: two events at party 

Drinking 
Z

.90 .85

Dance 
X

Throw 
up 
Y

.80



Relationships among variables

18

Example: two events at party 

Drinking 
Z

.90 .85

Dance 
X

Throw 
up 
Y
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Relationships among variables

Z

X

Y
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Relationships among variables

20

Drinking 
Z

.90 .85

Dance 
X

Throw 
up 
Y

.80



• What is the unique correlation 
between any pair of variables?

Relationships among variables

20

Drinking 
Z

.90 .85

Dance 
X

Throw 
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• What is the unique correlation 
between any pair of variables?

• Do the math: calculate the 
partial correlations

Relationships among variables

Partial correlation

20

Drinking 
Z

.90 .85

Dance 
X

Throw 
up 
Y

.80



• What is the unique correlation 
between any pair of variables?

• Do the math: calculate the 
partial correlations

• Draw a schematic Venn diagram 
of the three variables and mark 
the found partial correlation area

Relationships among variables

Partial correlation

20

Drinking 
Z

.90 .85

Dance 
X

Throw 
up 
Y

.80



Relationships among variables
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Drinking 
Z

.90 .85

Dance 
X

Throw 
up 
Y

.80



Relationships among variables

Z

X

Y

22



Relationships among variables

Z

X

Explained part

Unexplained part

Another way of looking at this (partialling out): 

• Regress Z on X: Z = β0x + βxX + εx  

• Regress Z on Y: Z = β0y + βyY + εy 

• Correlate the unexplained parts 
(residuals; εx and εy)

23



Relationships among variables

Z

X

Explained part

Unexplained part correlation between 
residuals

Y

Another way of looking at this: 

• Regress Z on X: Z = β0x + βxX + εx  

• Regress Z on Y: Z = β0y + βyY + εy 

• Correlate the unexplained parts 
(residuals; εx and εy)

24



Relationships among variables

Z

X

Unexplained parts rXY|Z

Y

Another way of looking at this: 

• Regress Z on X: Z = β0x + βxX + εx  

• Regress Z on Y: Z = β0y + βyY + εy 

• Correlate the unexplained parts 
(residuals; εx and εy)

25

Z

X



Quiz!

1. Which statement is correct?
The partial correlation between X and Y  

is the correlation between X and Y… 

A. given Z 

B. when controlled for Z 

C. with Z partialled out 

D. that cannot be explained by Z

26



2. How many statements are correct?
A partial correlation of zero between A and B means  

A. A and B are not correlated 

B. A and B are independent given C 

C. A and B are independent when conditioned on C 

D. A ⫫ B | C 

E. A and B might be correlated, but knowing C makes 
them independent

Quiz!

27



Conditional independence

Example

C: fair (50%) or biased (90 head%) coin 

T1: first toss (head or tail) 

T2: second toss (head or tail)

28



Conditional independence

First scenario

• I have two coins in my pocket and give 
you one (without telling which) 

• You toss it: head comes up 

• What is the probability of head for the 
second toss (same coin)? 29

Example

C: fair (50%) or biased (90 head%) coin 

T1: first toss (head or tail) 

T2: second toss (head or tail)



Conditional independence

Second scenario

• I have two coins in my pocket and give 
you one and I tell you it’s the fair coin 

• You toss it: head comes up 

• What is the probability of head for the 
second toss (same coin) now?30

Example

C: fair (50%) or biased (90 head%) coin 

T1: first toss (head or tail) 

T2: second toss (head or tail)



T1 and T2 are correlated, but 
knowing C makes them independent

Conditional independence

C

T1 T2

T1 ⫫ T2 

T1 ⫫ T2 | C

‘is independent of’

‘given’
31

Example

C: fair (50%) or biased (90 head%) coin 

T1: first toss (head or tail) 

T2: second toss (head or tail)



Recap

32

To conclude 

• We are interested in conditional independence (CI) 
relationships in networks 

we want to know if (and to what extent) symptoms A and B are 
related after controlling for all other symptoms 

• Partial correlations provide information about CI’s 

• And that is what graphical models display 

• You learned how the concepts of ‘correlations’, ‘partial 
correlations’, ‘regression coefficients’, ‘shared variance’, 
‘controlling for’, ‘conditioning on’ are related.



Working with real data

33



Working with real data

Things to take into account 

• Types of variables (continuous, ordinal) 

• Non-Normality (non-normal continuous 
data transformed using non paranormal 
transformation (Liu et al., 2009) 

• Too many variables with too few 
participants

34



Practical

• Open Assignment_Day3_Part1.pdf 

• Just follow the steps! 

• If you go through the exercises 
quickly, you can try the exercises 
on your own data (if your data is 
cross-sectional) 

35



Claudia van Borkulo 
Februari 15th, 2017

Day 3, part 2 
Estimating graphical models with L1 regularization
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Outline

2

1. The basics: Conditional independence 

2. Estimating graphical models with L1 
regularization

3. Recent advancements 
Network stability 

Network comparison



Markov Random Field (MRF) Bayesian Network (BN)

Undirected graph Directed acyclic graph

Graphical models

Recap

3

• A graphical model represents 
the conditional dependence 
structure among random 
variables 

• The variables (e.g., symptoms) 
have pairwise/direct (causal) 
relationships 

• An edge in the undirected MRF 
version can be viewed as a 
potential causal pathway 

• A missing edge means that 
variables are conditionally 
independent, i.e., independent 
given all other variables:



Two types 

• Ising Model 
– for	binary	data	
– cross-sectional	
– estimation	based	on	multiple	logistic	regression	

models	

• Gaussian Graphical Model (GGM) 
– for	normally	distributed	data	
– cross-sectional	
– estimation	based	on	multiple	linear	regression	

models	(or	inverse	of	covariance	matrix)

Markov random fields

Markov Random Field (MRF) 
Undirected graph

4



Conditional independence

5



CI when partial correlation is zero…. but 
partial correlations are often not exactly 
zero

Conditional independence
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CI when partial correlation is zero…. but 
partial correlations are often not exactly 
zero
How to deal with that?

• use a threshold
arbitrary 

• significance tests
Multiple testing problem: n(n-1)/2

Conditional independence

5

1
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CI when partial correlation is zero…. but 
partial correlations are often not exactly 
zero
How to deal with that?

• use a threshold
arbitrary 

• significance tests
Multiple testing problem: n(n-1)/2

Bonferroni correction leads to loss of power
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partial correlations are often not exactly 
zero 
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(called ‘regularization')
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Which coefficients can be 
regularized? 

Partial correlation coefficients 

Similar to elements of the inverse 
covariance matrix (only under 
multivariate normality) 

or 

regression coefficients of node-wise 
regressions (also for binary variables; 
logistic regressions) 

• The approximation with regression 
is computationally efficient and 
asymptotically consistent

Conditional independence

7

only with gaussian data

with binary and gaussian data
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But what is the structure 
of depression?
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• x = (x1, x2, …,xn) 
• xj = 0 or 1 
• τj: node parameter (threshold) 
• βjk: pairwise interaction parameter

Ising model
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Conditional probability

Autonomous disposition of xj

τ1 + β12X2 + β13X3 + …

}
• x = (x1, x2, …,xn) 
• xj = 0 or 1 
• τj: node parameter (threshold) 
• βjk: pairwise interaction parameter
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Conditional probability

Autonomous disposition of xj
Interaction strength between xj and xk

τ1 + β12X2 + β13X3 + …

}
• x = (x1, x2, …,xn) 
• xj = 0 or 1 
• τj: node parameter (threshold) 
• βjk: pairwise interaction parameter

Ising model



Conditional independence

X1

X4
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• Regress X4 on X1: you get β14
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• Regress X4 on X1: you get β14

• Regress X1 on X4: you get β41

Conditional independence
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• Regress X4 on X1: you get β14 

• Regress X1 on X4: you get β41 

• Average the coefficients 
ωij =  (βij + βji)/2 

This works for binary data (Ising model) 
For Gaussian Graphical model it works when the 
coefficients are scaled 
But: for GGM you can directly establish CI with the 
inverse covariance matrix (not possible with binary data)

Conditional independence

X1

X4

ω14

12
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X3 X4

Perform regression of X1 on all other variables

With more variables
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Basic idea

τ1 τ2

β14
β13

β12

Repeat this for every variable 
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β12
X1 X2

X3 X4

β21

β41

β42

β24

β31

β14

β34

β43

β23

β32

β13

τ2τ1

τ3 τ4

Control model complexity and prevent overfitting: 
L1-regularized logistic regression

Basic idea



L1 regularization
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• Involves subset selection (sparsity) 

• Normal regression involves optimizing a function 
to find the solution that minimizes the sum of 
squared residuals
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• aka Lasso 

• Least Absolute Shrinkage and Selection Operator 

• Involves subset selection (sparsity) 

• Normal regression involves optimizing a function 
to find the solution that minimizes the sum of 
squared residuals 

• With L1 regularization the function to optimize is 
extended with an extra term:
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Property of L1- regularization:  

• ensures that some coefficients are set to zero (exactly)  
• shrinks other coefficients 

Convenient property :  

• use this for problem with small conditional dependencies 
• instead of ignoring multiple testing problem and Bonferroni 

corrections

18

L1-regularization
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L1-regularization

L1- regularization:  
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tuning parameter

L1-regularization

• i: independent observations {1, 2, 
…, n} 

•      :  matrix with βjk and τj 

• ρ: tuning parameter 

• R package glmnet: 100 values of ρ



• This function is known to be convex (it 
has a minimum) 

• For a specific value of λ, you can find 
the βs by minimizing this function

22

tuning parameter

L1-regularization

• i: independent observations {1, 2, 
…, n} 

•      :  matrix with βjk and τj 

• ρ: tuning parameter 

• R package glmnet: 100 values of ρ



• For different values of λ you get different sets of βs 

• Now we can select the best fitting set of βs 

• With a goodness-of-fit measure 

extended BIC (Bayesian Information Criterion) 

extension: penalty on the number of variables 
AND on the number of edges 

• But… EBIC involves choosing a hyperparameter γ!

23

tuning parameter

L1-regularization



• Extended Bayesian Information Criterion 

• Based on negative (log) likelihood 

•   

• EBICγ(J) = -2L + |J|log(n) + 2γ|J|log(p-1)

24

L1-regularization

J: number of neighbors 

N: number of observations 

p: number of variables 

γ: hyperparameter
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L1 regularization

β12 β13 β14ρ = .025 EBIC = -1274

β13 β14ρ = .185 EBIC = -1525

ρ = .243 β13 EBIC = -1308

tuning parameter
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L1 regularization

β12 β13 β14ρ = .025 EBIC = -1274

β13 β14ρ = .185 EBIC = -1525

ρ = .243 β13 EBIC = -1308

tuning parameter
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X1 X2

X3 X4

β21

β41

β42

β24

β31

β14β13

if βij ≠ 0 AND βji ≠ 0 
then ωij =  (βij + βji)/2 
else ωij =  0

AND-rule: 



X1 X2

X3 X4

ω14ω13 ω24

if βij ≠ 0 AND βji ≠ 0 
then ωij =  (βij + βji)/2 
else ωij =  0

AND-rule: 



ω14 is the connection strength when controlled for all other variables

X1 X2

X3 X4

ω14ω13 ω24



Performance
• High specificity 

few false positives 

• Moderate sensitivity 
some false negatives 

• Converges to the true network 
with increasing sample size, more and more true edges are recovered 

• For binary data: IsingFit() (in package IsingFit) 
L1 regularization on node wise logistic regressions 

• For multivariate normal data: EBICglasso() (in package 
qgraph) 

L1 regularization on the inverse covariance matrix

30

L1-regularization



Performance
• High specificity 

few false positives 

• Moderate sensitivity 
some false negatives 

• Converges to the true network 
with increasing sample size, more and more true edges are recovered 

• For binary data: IsingFit() (in package IsingFit) 
L1 regularization on node wise logistic regressions 

• For multivariate normal data: EBICglasso() (in package 
qgraph) 

L1 regularization on the inverse covariance matrix

30

L1-regularization
These packages do everything 
(node-wise L1-regularized regression, 

choosing the tuning parameter, apply the 
AND-rule, etc) for you! You only 
have to enter your data in 

IsingFit() and EBICglasso() and 
you get the best fitting network! :-)



How much observations do I need? 
• Rule of thumb for binary data 

The minimal number of observations: (p(p-1)/2 + p)*5 
p: number of variables 

p(p-1)/2 is the number of possible edges to be estimated 

+ p because the Ising model also estimates thresholds 

• Rule of thumb for gaussian data 

The minimal number of observations: (p(p-1)/2)*5

31

Rule of thumb

Bühlmann, P. & van de Geer, S. (2011). Statistics for High-Dimensional 
Data: Methods, Theory and Applications.  Springer.



• L1 regularization is used to find the optimal balance 
between parsimony and goodness of fit and to 
circumvent multiple testing problems 

• L1 regularization sets some coefficients to exactly 
zero 

• Connections are conditional dependencies (direct 
relationships after controlling for all others) 

• Assuming that the data are realisations of a sparse 
network of pairwise interactions, these procedures 
converge to the true network

Recap

32



About performance of IsingFit (with elaborate Supplement 
about Ising model and regularization): 
• Van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., 

Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing 
networks from binary data. Scientific Reports, 4(5918). 

Tutorial about regularization: 
• https://arxiv.org/abs/1607.01367 

About performance EBICglasso: 
• https://arxiv.org/pdf/1606.05771v1.pdf 

Literature

https://arxiv.org/pdf/1606.05771v1.pdf


Practical

Open Assignment_Day3_Part2.pdf 

Just follow the steps! 

Agree on time to start with third 
and final part of today…
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Claudia van Borkulo 
Februari 15th, 2017

Day 3, part 3 
Recent advancements

1



• Conditional (in)dependence 
a thorough understanding is important to work 
with graphical models (Ising model, Gaussian 
Graphical model) 

• Estimation of graphical models 
IsingFit, EBICglasso 

regularization to find optimal balance between 
parsimony and goodness of fit

Recap

2



1. The basics: Conditional independence 

2. Estimating graphical models with L1 
regularization 

3. Recent advancements
Network stability

Network comparison

MGM

Outline

3



Network stability

4



Suppose we want to write a paper on this data set 

• 180 women with PTSD diagnosis, 17-item screener 
• Data from DOI 10.1037/a0016227, freely available at https://

datashare.nida.nih.gov/protocol/nida-ctn-0015

Network stability

5

https://datashare.nida.nih.gov/protocol/nida-ctn-0015
https://datashare.nida.nih.gov/protocol/nida-ctn-0015


Dataset 1

6
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Dataset 1



Dataset 1
Paper

• Strong positive connections between 3—4, 5—11, 16—17
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Dataset 1
Paper

• Strong positive connections between 3—4, 5—11, 16—17

• Strong negative edge between 10—12
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Dataset 1
Paper

• Strong positive connections between 3—4, 5—11, 16—17

• Strong negative edge between 10—12

• Most central nodes: 3, 16, 17 ⟶ consider as targets in 
intervention study

8



Dataset 1

Paper published … partytime!
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Dataset 1

Paper published … partytime!
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Dataset 2

Now imagine we find another dataset, same sample size, 
female PTSD patients

10First dataset, n=180
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Network stability

• To avoid a replicability crisis, we need to investigate and report 
how stable our parameter estimates are 

• Especially relevant because our research may have clinical 
implications for patients 
– E.g.: what are the most central symptoms that ought to be treated?

14



Network stability

Two main questions: 
• Stability of edge weights 
• Stability of centrality indices

15



Network stability

Two main questions:
• Is edge 3—4 meaningfully larger than edge 3—11?

16



Network stability

Two main questions:
• Is edge 3—4 meaningfully larger than edge 3—11?
• Is node 17 substantially more central than node 16?

16



EDGE WEIGHT STABILITY

17



Bootstrapping edge weights

18



Bootstrapping edge weights

- Is edge 3—4 (0.42) stronger than edge 3—11 (0.14)? 
- Obtain CI by bootstrapping
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Boostrapping edge weights

- The edge weights of your sample are your point estimates 

- Copy pasting your sample to create a ‘population’ 

- Take random samples (same size as original sample) from the 
‘bootstrap’ population 

- Estimate whatever you were estimating (edge weights) 

- This gives you a distribution of estimated values and 

- a confidence interval around your point estimate!

19



20Edge weights

Ed
ge
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0.06

Edge weights

E
dg

es
3—4

3—11 0.42

Most	edges	are	not	
meaningfully	different	from	
each	other	because	their	CIs	
overlap.	

This	is	not	really	surprising:	we	
are	estimating	136	edge	
parameters	with	only	180	
observations.



CENTRALITY STABILITY

25



Subset bootstrap

We now want to understand how stable the estimation of 
centrality indices is: e.g., is centralty of node 17 (1.16) 
substantially higher than the centrality of node 16 (0.99)

26



Subset bootstrap

27



Subset bootstrap
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Subset bootstrap

Unfortunately, bootstrapping CIs around centrality 
estimates is not possible 

Costenbader, E., & Valente, T. W. (2003)  
DOI: 10.1016/S0378-8733(03)00012-1 27



Subset bootstrap

28



Subset bootstrap

1. Obtain centrality for data (s17 > s3 > s16...)
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Subset bootstrap

1. Obtain centrality for data (s17 > s3 > s16...)
2. Subset data with 90% of the people

3. Obtain centrality for 90% subset  (s17 > s7 > s4...)
4. Subset data 80% of the people
5. Obtain centrality for 80% subset (s16 > s7 > s3...)
6. ...

28



Subset bootstrap

So what we get is centrality for  
• Full data              (s17 > s3 > s16...) 
• N -10% (90%) data  (s17 > s7 > s4...) 
• N -20% (80%) data  (s16 > s7 > s3...) 
• N -30% (70%) data  (s17 > s3 > s16...) 
• N -40% (60%) data  (s17 > s3 > s16...) 
• N -50% (50%) data  (s16 > s3 > s7...) 
• N -60% (40%) data  (s17 > s3 > s7...) 
• N -70% (30%) data  (s17 > s3 > s16...) 
• N -80% (20%) data  (s3 > s6 > s17...) 
• N -90% (10%) data  (s7 > s3 > s16...)

29



Subset bootstrap

30



Subset bootstrap

We can also subset nodes instead of people

31



Take home message

• For most statistical parameters or test statistics, it is very 
useful to understand how precisely they are estimated

– Different ways to do that, one way is to bootstrap confidence 
intervals around the point estimates
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Take home message

• For most statistical parameters or test statistics, it is very 
useful to understand how precisely they are estimated

– Different ways to do that, one way is to bootstrap confidence 
intervals around the point estimates

• Investigating the stability of network parameters like 
edge weights will help us to understand how likely our 
networks generalize

• bootnet is a very first & preliminary step

32



Thanks to Eiko Fried!

Network stability

33

Epskamp, S., Borsboom, D., & Fried, E. I. (2016). Estimating Psychological 
Networks and their Stability: a Tutorial Paper. arXiv:1604.08462 [stat]. Retrieved 
from http://arxiv.org/abs/1604.08462

http://arxiv.org/abs/1604.08462


Network comparison

34

Can you spot the differences?



Network comparison

35

• Comparing network structures relied mainly on visual inspection 

• There was no test to directly statistically assess the difference 
between two networks



Data generating 
mechanism

Comparing networks



Comparing networks
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Difference = “small”



Comparing networks
Two data generating mechanisms

Difference = “large”



Comparing networks

Two data generating mechanisms

Difference = “large”



Comparing networks

Two data generating mechanisms

Difference = “large”

• When is difference ‘large’?



Comparing networks

Two data generating mechanisms

Difference = “large”

• When is difference ‘large’?

When it is larger than you would expect under the null 
hypothesis



Comparing networks

Two data generating mechanisms

Difference = “large”

• When is difference ‘large’?

When it is larger than you would expect under the null 
hypothesis

• What is the null hypothesis?



Comparing networks

Two data generating mechanisms

Difference = “large”

• When is difference ‘large’?

When it is larger than you would expect under the null 
hypothesis

• What is the null hypothesis?

All individuals come from the same population (with 
only one data generating mechanism)



Comparing networks

Two data generating mechanisms

Difference = “large”

• When is difference ‘large’?

When it is larger than you would expect under the null 
hypothesis

• What is the null hypothesis?

All individuals come from the same population (with 
only one data generating mechanism)

• What do you expect under the null hypothesis?



Comparing networks

Two data generating mechanisms

Difference = “large”

• When is difference ‘large’?

When it is larger than you would expect under the null 
hypothesis

• What is the null hypothesis?

All individuals come from the same population (with 
only one data generating mechanism)

• What do you expect under the null hypothesis?

It doesn’t matter how individuals are arranged



Comparing networks

Two data generating mechanisms

Difference = “large”

• When is difference ‘large’?

When it is larger than you would expect under the null 
hypothesis

• What is the null hypothesis?

All individuals come from the same population (with 
only one data generating mechanism)

• What do you expect under the null hypothesis?

It doesn’t matter how individuals are arranged

• Let’s see what happens if we repeatedly 
(randomly) rearrange individuals and calculate the 
‘difference’
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Comparing networks

Two data generating mechanisms

Difference = “large”

• Life example?
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• NCT is implemented in R 

• Currently suited for binary and 
continuous data 

• Networks are estimated with IsingFit 
(binary data; Van Borkulo et al., 2014) or 
with EBICglasso (continous data; 
Epskamp et al., 2012)

Network Comparison Test
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Network Comparison Test

Null hypothesis

• It doesn’t matter how you 
rearrange individuals 

• Each individual stems from the 
same population



1"
2"
3"
4"
5"

!!9!
!!7!
!!2!
10!
!!5!

!10!
!!!9!
!!!5!
!!!7!
!!!4!

!!6!
!!7!
!!8!
!!9!
10!

!!3!
!!6!
!!4!
!!1!
!!8!

!!!6!
!!!3!
!!!8!
!!!1!
!!!2!

Observed(data(and(networks

Permuted(data(and(networks

0 5 10 15 20

Area Between Curves

observed difference

Group(A Group(B

‘Group(A’ ‘Group(B’

1"
2"
3"
4"
5"

!!9!
!!7!
!!2!
10!
!!5!

!10!
!!!9!
!!!5!
!!!7!
!!!4!

!!6!
!!7!
!!8!
!!9!
10!

!!3!
!!6!
!!4!
!!1!
!!8!

!!!6!
!!!3!
!!!8!
!!!1!
!!!2!

Observed(data(and(networks

Permuted(data(and(networks

0 5 10 15 20

Area Between Curves

observed difference

Group(A Group(B

‘Group(A’ ‘Group(B’

1"
2"
3"
4"
5"

!!9!
!!7!
!!2!
10!
!!5!

!10!
!!!9!
!!!5!
!!!7!
!!!4!

!!6!
!!7!
!!8!
!!9!
10!

!!3!
!!6!
!!4!
!!1!
!!8!

!!!6!
!!!3!
!!!8!
!!!1!
!!!2!

Observed(data(and(networks

Permuted(data(and(networks

0 5 10 15 20

Area Between Curves

observed difference

Group(A Group(B

‘Group(A’ ‘Group(B’

Network Comparison Test

Reference distribution
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Network Comparison Test

Reference distribution
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Tests on three invariance hypotheses: 

1. Network structure 
2. Global strength 
3. Edge strength

Network Comparison Test

Reference distribution



Network Comparison Test
1. Network structure invariance hypothesis

• structure is completely identical 
across subpopulations 

• distance measure (M) is based on 
the maximum or L∞ norm 

• similar to testing whether two 
distributions are similar (as in the 
Kolmogorov–Smirnov test) Dij = |A1ij - A2ij|

M(G1,G2)= max (Dij)

1 32 1 32

- 0.1 0.5

- - 0.1

- - -



• overall level of connectivity is 
identical across subpopulations 

• distance measure (S) is based on 
difference in global strength

2. Global strength invariance hypothesis

Network Comparison Test
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- - 0.1

- - -

- 0.2 0.5

- - 0
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1 32 1 32

S(G1,G2)= |(∑|A1ij| - ∑|A2ij|)|



• a specific edge is identical across 
subpopulations 

• distance measure (E) is based on 
difference in connection strength

3. Edge strength invariance hypothesis

Network Comparison Test

1 32 1 32

E(βijG1,βijG2)=|βijG1 - βijG2|
βij: a particular edge

Dij = |A1ij - A2ij|
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Network Comparison Test
1. Network structure invariance hypothesis

• structure is completely identical across 
subpopulations 

• distance measure (M) is based on the 
maximum or L∞ norm

• overall level of connectivity is identical 
across subpopulations 

• distance measure (S) is based on 
difference in global strength

2. Global strength invariance hypothesis

• a specific edge is identical across 
subpopulations 

• distance measure (E) is based on 
difference in connection strength

3. Edge strength invariance hypothesis



Netherlands Study of Depression and Anxiety (NESDA; Penninx et al., 2008)

Real data
NCT(datamen,datawomen, binary.data=TRUE, it=1000, test.edges=TRUE, edges=list(c(2,11)))
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Summary 

• Network structure: no difference (p=.251) 

• Global strength: no difference (p=.909) 

• Edge strength: sui-int significantly stronger in 
network of males (p=.027)

Real data



Mixed graphical models

52
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We currently fit networks with either binary or gaussian data

Mixed graphical models
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But psychological data are often mixed

Mixed graphical models



MGM

• Novel	R	package	mgm	(mixed	graphical	models)	allows	us	to	fix	
mixed	data	
– By	Jonas	Haslbeck,	UvA,	http://jmbh.github.io/papers_software	

• Further	reading:	
– Post	1:	http://jmbh.github.io/Estimation-of-mixed-graphical-models/	
– Post	2:	http://jmbh.github.io/Interactions-between-categorical-Variables-

in-mixed-graphical-models/	
– Papers	on	Jonas'	homepage	
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MGM

Call	packages	and	get	example
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library("mgm")  # Estimate mixed graphical models 
library("httr") # For GET() function to download data  

url='http://jmbh.github.io/figs/efpsa_workshop/ 
 autism_datalist.RDS' GET(url, write_disk  
 "autism_datalist.RDS", overwrite=TRUE))  

Autism_data <- readRDS('autism_datalist.RDS') 



MGM
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Autism_data$colnames # variable names  
Autism_data$type     # define variable types 
Autism_data$lev      # define variables level



MGM

Estimate	&	visualize	network
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fitMGM <- mgmfit(Autism_data$data, Autism_data$type,  
Autism_data$lev, d=2)  

qgraph(fitMGM$wadj, nodeNames=Autism_data$colnames,  
layout='spring', edge.color=fitMGM$edgecolor,  legend.cex=.
3, vsize=3, legend.cex=1)



MGM
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Practical

Open Assignment_Day3_Part3.pdf 

Just follow the steps! 

If you go through the exercises quickly, you 
can try stability analysis or network 
comparison on your own data (if you data is 
cross-sectional) 
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Today you have learned 
• about conditional (in)dependence 

when a node is connected to another node it 
means that they are still associated after 
controlling for all other variables 

• about advanced network estimation 
regularization to find optimal balance between 
parsimony and goodness of fit 

• about network stability, network 
comparison, mix graphical models 

Recap of Day 3
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About network stability:
Epskamp, S., Borsboom, D., & Fried, E. I. (2016). Estimating Psychological Networks and 
their Stability: a Tutorial Paper. arXiv:1604.08462 [stat]. Retrieved from http://arxiv.org/abs/
1604.08462

A paper that applied NCT:
van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Waldorp, L. J., & 
Schoevers, R. A. (2015). Association of Symptom Network Structure With the Course of 
Depression. JAMA Psychiatry, 72(12), 1219. http://doi.org/10.1001/jamapsychiatry.2015.2079

Submitted paper on performance of NCT:
van Borkulo, C. D., Waldorp, L. J., Boschloo, L., Kossakowski, J., Tio, P., Schoevers, R. A., & 
Borsboom, D. Distinguishing between networks on three aspects: A permutation test.

Literature



cvborkulo@gmail.com

https://cvborkulo.com

https://www.researchgate.net/profile/Claudia_Van_Borkulo

https://nl.linkedin.com/in/claudia-van-borkulo-4b227a70

Contact information

mailto:cvborkulo@gmail.com
https://cvborkulo.com
https://www.researchgate.net/profile/Claudia_Van_Borkulo
https://nl.linkedin.com/in/claudia-van-borkulo-4b227a70


Let’s call it a day!
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