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What is the network structure of
osychological phenomena’”

...a big challenge!
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The bigger picture

Graphical models

/

Markov Random Field (MRF)

Undirected graph

/

\

AN

Wikipedia:

A graphical model or probabilistic graphical
model (PGM) is a probabilistic model for which a
graph expresses the conditional dependence
structure between random variables.

Bayesian Network (BN)

Directed acyclic graph
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https://en.wikipedia.org/wiki/Probabilistic_model
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Random_variable

The bigger picture

Graphical models

Wikipedia:

A graphical model or probabilistic graphical
model (PGM) is a probabilistic model for which a
graph expresses the conditional dependence
structure between random variables.

« The variables (e.g., symptoms)
have pairwise/direct (causal)
relationships

Markov Random Field (MRF) Bayesian Network (BN)

B
C
D
Undirected graph Directed acyclic graph

/ 0\ :

« Anundirected edge in a MRF
can be viewed as a potential
causal pathway

« A missing edge means that
variables are conditionally
independent, i.e., independent
given all other variables:

Xi 1L X;| X\ (i)



https://en.wikipedia.org/wiki/Probabilistic_model
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Random_variable

Graphical models

Markov Random Field (MRF)

0'0

Undirected graph

Ising Model

— for binary data
— cross-sectional

— estimation based on multiple
logistic regression models

/

C

D

\

Gaussian Graphical Model
(GGM)

— for normally distributed data
— cross-sectional

— estimation based on multiple linear
regression models (or inverse covariance
matrix)



Today's program

1. The basics: Conditional independence

- What does it mean to say that two symptoms ar (not)
connected?

2. Estimating graphical models with Ly regularization

3. Recent advancements
- Network stability

- Network comparison




What is a network”
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A node is an entity

train stations

</

people

/

symptoms

</

between nodes

0N

IS a connect

* An edge

o railways

o friendships

soclal interaction

</



How to estimate a network??

A connection between symptoms
can be based on:

- correlation (direct or indirect relationship)
o partial correlation (direct relationship)

~ regularized relationship (afternoon)

- causal relationship (tomorrow)



How to estimate a network??
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How to estimate a network??

o Another familiar analysis to establish relationships
among variables

o regression
C Y =T1+ B12X2+ B13X3+ .. + &

 |f true generating mechanism is
e Will ApredictB?B=1+BA+e —

~ Yes A
« Will B predict AYA=1+pB+¢

- Yes!
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How to estimate a network??

o Another familiar analysis to establish relationships
among variables

o regression
c Yy =T+ B12X2+ B13X3+ ... + &

 |f true generating mechanism is

o Will A predict B? B =1+ pA + /“O
- Yes A

« Will B predict AYA=1+pB+¢
~ Yes!

e Because we have cross sectional data, we don't
know the direction. Therefore, often undirected
networks.

A B

10



How to estimate a network??

* V=T + B12X2 + B13X3 + ... €
* (312: slope, regression coefficient
* relates to

o correlation

o partial correlation

o explained variance

o conditional independence

11






Relationships among variables

* V=T1+ B12X2 + B13X3 + ... €
* [312: slope, regression coefficient
* relates to
o correlation
o partial correlation
o explained variance
o conditional independence
* [hese concepts are all somehow related ana

understanding this is essential when working A 8
with graphical models
- What does it mean to say that two (c)

symptoms are connected in a network? [

13



Relationships among variables

|_et’s start with correlations

e Are X1 and X2 correlated?




Relationships among variables

Think of correlations as varying connection strength or as
shared variance

Uncorrelated

Strongly correlated “
15



Relationships among variables

|_et’s start with correlations

e Are X1 and X2 correlated?
e Say, r=.3

 This means that 9% of the variance in
X1 is explained by the variance in X2

e Note: .09 is the R? that you get from
regression!

16



Relationships among variables

Example: two events at party
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Relationships among variables

90 \. .85
.80
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Relationships among variables

* What is the unigue correlation
between any pair of variables?

90 \. .85
.80
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Relationships among variables

* What is the unigue correlation
between any pair of variables?

e Do the math: calculate the
partial correlations

Partial correlation

PXYy — PXZPZY
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Relationships among variables

* What is the unigue correlation
between any pair of variables?

e Do the math: calculate the
partial correlations

* Draw a schematic Venn diagram
of the three variables and mark
the found partial correlation area

Partial correlation

PXYy — PXZPZY

20



Relationships among variables

21



Relationships riaples




Relationships among variables

Another way of looking at this (partialling out):

* Regress Zon X: Z = Box + BxX + &x Explained part

e RegressZonY:.Z =Boy + ByY + &

e (Correlate the unexplained parts
(residuals; ex and gy)

Residuals are shown in RED

c 1+ 2 3 4 5 & 7 8 9 10

X o3 Unexplained part




Relationships among variables

Another way of looking at this:

* Regress Zon X: Z = Box + BxX + &x Explained part

e RegressZonY:.Z =Boy + ByY + &

e (Correlate the unexplained parts
(residuals; ex and gy)

Residuals are shown in RED

- N W as N

o

vvvvvvvvv

o 1+ 2 3 4 35 & 7 8 9 10

X o4 Unexplained part

correlation between
residuals




Relationships among variables

Another way of looking at this:
* Regress Zon X: Z = Pox + PxX + €
e RegressZonY:.Z =Boy + ByY + &

e (Correlate the unexplained parts
(residuals; ex and gy)

Residuals are shown In RED

w & U o N @
Bt ——r—

o5 Unexplained parts Ixy|z




Quiz!

1. Which statement is correct?

The partial correlation between X and Y

IS the correlation between X and Y...

A. given L

B. when controlled for Z

C. with Z partialled out

D. that cannot be explained by Z

20



Quiz!

2. How many statements are correct?

A partial correlation of zero between A and B means

A. A and B are not correlated
B. A and B are independent given C

C. A and B are independent when conditioned on C

D. ALB|C

E. A and B might be correlated, but knowing C makes
them independent

27



Conditional independence

Example
C: fair (60%) or biased (90 head%) coin
T+: first toss (head or tail)

T2: second toss (head or tail)

28



Conditional independence

Example
C: fair (60%) or biased (90 head%) coin
T+: first toss (head or tail)

T2: second toss (head or tail)

First scenario

* | have two coins In my pocket and give
you one (without telling which)

* You toss it: head comes up

* What is the probability of head for the

second toss (same coin)? o



Conditional independence

Example
C: fair (60%) or biased (90 head%) coin
T+: first toss (head or tail)

T2: second toss (head or tail)

Second scenario

* | have two coins In my pocket and give
you one and | tell you it's the fair coin

* You toss it: head comes up

* What is the probability of head for the
second toss (same coin) now?_



Conditional independence

Example
C: fair (60%) or biased (90 head%) coin
T+: first toss (head or tail)

To: second toss (head or tail)

T4 and T, are correlated, but
knowing C makes them independent

@ 'ts independent of’
Ty X V/\

IE 1LT2

‘given’
31



Recap

To conclude

* We are interested in conditional independence (Cl)
relationships in networks

o we want to know if (and to what extent) symptoms A and B are
related after controlling for all other symptoms

e Partial correlations provide information about Cl’s
* And that is what graphical models display

* You learned how the concepts of ‘correlations’, ‘partial
correlations’, ‘regression coefficients’, ‘shared variance’,
‘controlling for’, ‘conditioning on’ are related.

32



Working with real data




Working with real data

Things to take into account

e Types of variables (continuous, ordinal)

* Non-Normality (hon-normal continuous
data transformed using non paranormal
transformation (Liu et al., 2009)

e Joo many variables with too few
participants

34



Practical

* Open Assignment_Day3_Part1.pdf

e Just follow the steps!

* |t you go through the exercises
quickly, you can try the exercises
on your own data (if your data is
cross-sectional)

35
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Outline

1. The basics: Conditional independence

2. Estimating graphical models with L1
regularization

3. Recent advancements
o Network stability

o Network comparison



Recap

Graphical models

/

Markov Random Field (MRF)
G&j@
g)
)

Undirected graph

/ 0\

AN

Bayesian Network (BN)

o0
c
O
Directed acyclic graph
3

A graphical model represents
the conditional dependence
structure among random
variables

The variables (e.g., symptoms)
have pairwise/direct (causal)
relationships

An edge in the undirected MRF
version can be viewed as a
potential causal pathway

A missing edge means that
variables are conditionally

independent, i.e., independent
given all other variables:

Xi 1L XX (i)




Markov random fields

Two types @ @

* [sing Model

— for binary data
— cross-sectional C

— estimation based on multiple logistic regression
models

« Gaussian Graphical Model (GGM) D

— for normally distributed data o

— cross-sectional Markov Random Field (MRF)
— estimation based on multiple linear regression Undirected graph
models (or inverse of covariance matrix)
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Conditional independence

Cl when partial correlation is zero.... but
partial correlations are often not exactly
Zero
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Conditional independence

Cl when partial correlation is zero.... but
partial correlations are often not exactly

zero 5 O

How to deal with that?

e Use a threshold

arbitrary

e significance tests

Multiple testing problem: n(n-1)/2

Bonferroni correction leads to loss of power

V| =5 V| =10
E|=10  |E| =45




Conditional independence

Cl when partial correlation is zero.... but
partial correlations are often not exactly
ZEro

How to deal with that?

* Use model selection to find the simplest model
(sparse network) that fits best

 Impose an L1 penalty on the coefficients

(called ‘regularization’)



Conditional independence

Cl when partial correlation is zero.... but
partial correlations are often not exactly
ZEro

How to deal with that?

e Use model selection to find the simplest model
(sparse network) that fits best

* Impose an L1 penalty on the coefficients

(called ‘regularization’)

V| =5 V| = 10 V| = 30
E|=10 |E|=45 |E| =435



Conditional independence

Which coefficients can be
regularized?

- Partial correlation coefficients \

: Simila_r to eIemenFs of the inverse > only with gaussian data
covariance matrix (only under
multivariate normality) )

or

© regression coefficients of node-wise

regressions (also for binary variables; | with binary and gaussian data
logistic regressions)

/

* The approximation with regression
IS computationally efficient and
asymptotically consistent



Psychopathology

Weight/ Psychomotor
ap petite problems

Concentration Depressed
problems mood

Worthless

IEIER Suicidal




Psychopathology

Weight/
appetite

Concentration Depressed
problems mood

Interest

Psychomotor
problems

Worthless

Suicidal

But what is the structure
of depression?




Psychopathology

Weig ht/ Psychomotor
ap petite problems

Concentration Depressed
problems mood

Worthless

Fatigue Interest Suicidal




|SINng model
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Xj=0or 1
Tj: node parameter (threshold)
Bi: pairwise interaction parameter




Conditional probability
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|SINng model

TiXj+X; ) DX

Conditional probability

exp [T+ D P

i ke Vi j _

T1 + B12Xo + B13X3 + ...

Xj=0or 1
Tj: node parameter (threshold)
Bi: pairwise interaction parameter




|SINng model

Autonomous disposition of x;

Conditional probability

AN

exp(| TjXj +x; ) P
kEVJ i
1+ exp|ti+ D Buxk

_ _

11 + B12X2 + B13X3 + ...

Xj=0or 1
Tj: node parameter (threshold)
Bi: pairwise interaction parameter




|SINg model

| N Interaction strength between xjand xx
Autonomous disposition of x;

Conditional probability /'

exp [T+ 2 Puxk

[ )
N
I
~
—
>
N
Y
D)
N

Xj=0or 1
Tj: node parameter (threshold)
Bi: pairwise interaction parameter




Conditional independence
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Conditional independence

* Regress X4 on X1: you get B14

° TEY
e
7
v
W
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Conditional independence

* Regress X4 on X1: you get B14
* Regress X1 on X4: you get 341
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Conditional independence

* Regress X4 on X1: you get B14
* Regress X1 on X4: you get 341

* Average the coefficients
wij = (Bii + Bji)/2

- This works for binary data (Ising model)

- For Gaussian Graphical model it works when the W14
coefficients are scaled

- But: for GGM you can directly establish Cl with the
inverse covariance matrix (not possible with binary data)

12



With more variables

Perform regression of X1 on all other variables



With more variables

Perform regression of X1 on all other variables
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Basic idea

Control model complexity and prevent overfitting:
[1-regularized logistic regression



[ 1 regularization

* aka Lasso
e [east Absolute Shrinkage and Selection Operator
* |Involves subset selection (sparsity)

 Normal regression involves optimizing a function
to find the solution that minimizes the sum of
squared residuals

16
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[ 1 regularization

* aka Lasso
e [east Absolute Shrinkage and Selection Operator
* |Involves subset selection (sparsity)

 Normal regression involves optimizing a function
to find the solution that minimizes the sum of
squared residuals

* With Ly regularization the function to optimize is
extended with an extra term:

p
.1
min 3y - XBI7 + A6
1=1

17



[ 1 regularization

* aka Lasso
e [east Absolute Shrinkage and Selection Operator
* |Involves subset selection (sparsity)

 Normal regression involves optimizing a function
to find the solution that minimizes the sum of
squared residuals

* With Ly regularization the function to optimize is
extended with an extra term:

p

1

min 5[y — XB|I st ) |6i <t
=1

17



[ 1-regularization

Property of L1- regularization:

e ensures that some coefficients are set to zero (exactly)
e shrinks other coefficients

Convenient property :

e use this for problem with small conditional dependencies
e instead of ignoring multiple testing problem and Bonferroni
corrections

p

1

min _ [ly — XB|* st ) |6i <t
=1

B

20 10 10 20 30 a0 50 60

18



[ 1-regularization

1 9
in ~|ly — X
min 2IIy B

The solution that satisfies the constraint

p
st. Y |Bi| <t
1=1

—

B,

S

[+ penalty

[> penalty

19

L1- regularization:

ensures that some
coefficients are set to
zero (exactly) and
shrinks other coefficients




[ 1-regularization

p

|

min 5[y - XB* st. Yy |8 <t
=1

P

The solution that satisfies the constraint

L1- reqularization:

ensures that some
coefficients are set to
zero (exactly) and
shrinks other coefficients

[+ penalty [> penalty @
19 '



[ 1-regularization

p
|
min =||y — XB||* s.t. Z 1Bi| <t
B2 i=1
OHMAGIF.COM
The solution that satisfies the constraint
L1- reqularization:
A® Bz ) ﬁ.
ensures that some
coefficients are set to
zero (exactly) and
. N shrinks other coefficients
B, B,
[+ penalty [> penalty

20



[ 1-regularization

p

o1

min o ly - XB|° st. ) |Bil <t
i—1

e ————

OHMAGIF.COM

The solution that satisfies the constraint

L1- reqularization:

ensures that some
coefficients are set to
zero (exactly) and
shrinks other coefficients

[+ penalty [> penalty @
20 ’
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[ 1-regularization

p

o1

min o ly - XB|° st. ) |Bil <t
i—1

e ————

OHMAGIF.COM

The solution that satisfies the constraint

L1- reqularization:

ensures that some
coefficients are set to
zero (exactly) and
shrinks other coefficients

[+ penalty [> penalty @
o1 :



[ 1-regularization

C1 2
min 5[y — X8> +2 D |6
.=l

tuning parameter

22



[ 1-regularization

ke V;’

+log(1+ exP{Tj'*‘ ink jk}) +pZ ‘Bf"‘}
kev, ﬁ keV,

tuning parameter

(:)}’.’ = argmin g, { — X' (‘rj + Z ﬂ)‘kxik)

I; independent observations {1, 2,
..., n}

~

@j.’ matrix with Bjk and Tj

O: tuning parameter

R package glmnet: 100 values of p

22




[ 1-regularization

(:)}p = arg min c} { —x,}' (‘Ej + Z ,Bijik)

ke V;‘

+log(1+ exP{Tj'*‘ ink jk}) +pZ "Bf"‘}
kev, ﬁ keV

tuning parameter

e This function is known to be convex (it
has a minimum)

. , I; independent observations {1, 2,
* [or a specific value of A, you can find o)

the Bs by minimizing this function ©f matrix with Bik and

P: tuning parameter

R package glmnet: 100 values of p
22




[ 1-regularization

(:)]p = arg min 0. { — X’ (Tj + z Bjkxfk)

ke V;‘

+ log (H— exp{t,-+ kczwxikﬂjk})%ﬁ’;’} ‘Bjk'}

tuning parameter

For different values of A you get different sets of Bs

 Now we can select the best fitting set of Bs

With a goodness-of-fit measure

o extended BIC (Bayesian Information Criterion)

o extension: penalty on the number of variables
AND on the number of edges

But... EBIC involves choosing a hyperparameter y!

23



[ 1-regularization

 Extended Bayesian Information Criterion

* Based on negative (log) likelihood

¢ éf = argmm c} { — X (’tj+ kz: ﬁjkxx'k>
CV‘;
+ log (H— exp{tj+ inkﬂjk}> +p Z ‘Bjk‘}
keV; keV;

 EBIC\J) =-2L + [J[log(n) + 2y|J|log(p-1)

J: number of neighbors
N: number of observations

p: number of variables

24 V: hyperparameter




[ 1 regularization

4 —@® )
0=.025 %\ FBIC = -1274
° Bz P13 P14 4 N 4
4 o O )
0=.185 Biz  Bu N FBIC = -1525
_ @ e Y,
4 ® O )
0= 243 Bus I EBIC = -1308
\_ © © J
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tuning parameter
gp o5



[ 1 regularization

4 —@® )
0=.025 %\ FBIC = -1274
° Bz P13 P14 d o 4
a o O )
0=.185 Biz  Bu N FBIC = -1525
_ @ e Y,
4 ® O )
0= 243 Bus I EBIC = -1308
\_ © © J

!

tuning parameter
gp o6
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o collect regularized parameters
o but....
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o collect regularized parameters
o but....
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o collect regularized parameters
o but....



if Bij = 0 AND Bji = 0
AND-rule: then wj = (B + Bji)/2
else wj= 0



9

if Bij = 0 AND Bji = 0

AND-rule: then wj = (B + Bji)/2
else wj= 0



1N
¢ o

w14 1S the connection strength when controlled for all other variables



[ 1-regularization

Performance
* High specificity

- few false positives

Moderate sensitivity

© some false negatives

* (Converges to the true network

o with increasing sample size, more and more true edges are recovered

For binary data: IsingFit () (in package IsingFit)

o L4 regularization on node wise logistic regressions

For multivariate normal data: EBICglasso() (in package
agraph)

o L4 regularization on the inverse covariance matrix

30



[ 1-regularization

Th
(n:-,(se P “kages
Performance o ewisg g -
SL"\S E’Iag Euh
* High specificity A'W%mie} k)
- few false positives l‘tqve to e
* Moderate sensitivity | :’O«Mc( -
[}
> some false negatives Jou Jet H«e bés
* (Converges to the true network MQE‘*’ON{! .

o with increasing sample size, more and more true edges are recovered

For binary data: IsingFit () (in package IsingFit)

o L4 regularization on node wise logistic regressions

For multivariate normal data: EBICglasso() (in package
agraph)

o Lqregularization on the inverse covariance matrix

30



Rule of thumb

How much observations do | need?

* Rule of thumb for binary data

> The minimal number of observations: (p(p-1)/2 + p)*5
o p: number of variables
o p(p-1)/2 is the number of possible edges to be estimated

o + p because the Ising model also estimates thresholds
* Rule of thumb for gaussian data

o The minimal number of observations: (p(p-1)/2)*5

Buhlmann, P. & van de Geer, S. (2011). Statistics for High-Dimensional
Data: Methods, Theory and Applications. Springer.
31



Recap

e [4regularization is used to find the optimal balance
between parsimony and goodness of fit and to
circumvent multiple testing problems

e [1regularization sets some coefficients to exactly
Zero

e Connections are conditional dependencies (direct
relationships after controlling for all others)

e Assuming that the data are realisations of a sparse
network of pairwise interactions, these procedures
converge to the true network

32



Literature

About performance of IsingFit (with elaborate Supplement
about Ising model and regularization):

« Van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L.,
Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing
networks from binary data. Scientific Reports, 4(5918).

Tutorial about regularization:
 https://arxiv.org/abs/1607.01367

About performance EBICglasso:
o https://arxiv.org/pdf/1606.05771v1.pdf



https://arxiv.org/pdf/1606.05771v1.pdf

Practical

o Open Assignment_Day3_Part2.pdf

o Just follow the steps!

o Agree on time to start with third
and final part of today...

34
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Recap

e Conditional (in)dependence

~ athorough understanding is important to work
with graphical models (Ising model, Gaussian
Graphical model)

» Estimation of graphical models
o IsingFit, EBICglasso

~ regularization to find optimal balance between
parsimony and goodness of fit st /e .




Outline

1. The basics: Conditional independence

2. Estimating graphical models with L1
regularization

3. Recent advancements
> Network stability

> Network comparison

- MGM



Network stability




Network stability

Suppose we want to write a paper on this data set

* 180 women with PTSD diagnosis, 17-item screener

» Data from DOI 10.1037/a0016227, freely available at https://
datashare.nida.nih.gov/protocol/nida-ctn-0015



https://datashare.nida.nih.gov/protocol/nida-ctn-0015
https://datashare.nida.nih.gov/protocol/nida-ctn-0015

Dataset

OO~NOOO P, WN =

: Avoid reminders of the trauma
: Bad dreams about the trauma
: Being jumpy or easily startled
: Being over alert

: Distant or cut off from people
: Feeling emotionally numb

: Feeling irritable

: Feeling plans wont come true
: Having trouble concentrating

: Having trouble sleeping

: Less interest in activities

: Not able to remember

: Not thinking about trauma

: Physical reactions

: Reliving the trauma

: Upset when reminded of trauma
: Upsetting thoughts or images



Dataset

17+

16~

15~

14-

13p

12~

11-

10-

Centrality

OO ~NOOO P, WN =

: Avoid reminders of the trauma
: Bad dreams about the trauma
: Being jumpy or easily startled
: Being over alert

: Distant or cut off from people
: Feeling emotionally numb

: Feeling irritable

: Feeling plans wont come true
: Having trouble concentrating

: Having trouble sleeping

: Less interest in activities

: Not able to remember

: Not thinking about trauma

: Physical reactions

: Reliving the trauma

: Upset when reminded of trauma
. Upsetting thoughts or images



Dataset

Paper

o Strong positive connections between 3—4, 5—11, 16—17




Dataset

Paper
o Strong positive connections between 3—4, 5—11, 16—17

e Strong negative edge between 10—12




Dataset

Paper
o Strong positive connections between 3—4, 5—11, 16—17

e Strong negative edge between 10—12

* Most central nodes: 3, 16, 17 — consider as targets in
intervention study




Dataset

Paper published ... partytime!




Dataset

Paper published ... partytime!




Dataset 2

Now imagine we find another dataset, same sample size,
female PTSD patients

First dataset, n=180



Dataset 2

Now imagine we find another dataset, same sample size,
female PTSD patients

0% 20

First dataset, n=180 Second dataset, n=179 10



Dataset 2

Now imagine we find another dataset, same sample size,
female PTSD patients
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Dataset 2

Now imagine we find another dataset, same sample size,
female PTSD patients
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R

o
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First dataset, n=180 Second dataset, n=179



Dataset 2

Centrality | Centrality

17+ > 17 -

16~ 16+

15F 15+

14- 14+

13+ 13+

12+ 12+

11+ 11+

10- 10+

9- 9

8 8

7= 7

: ; )
5- 5

4- 4

3 ) 3

2¢ 2

1- 1

-1 0 1 2 2 10 1

First dataset, n=180 Second dataset, n=179



Dataset 2
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Dataset 2
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Network stability

e To avoid a replicability crisis, we need to investigate and report
how stable our parameter estimates are

e Especially relevant because our research may have clinical
implications for patients

— E.g.: what are the most central symptoms that ought to be treated?

14



Network stabillity

Two main questions:

o Stabi
o Stabi

ity Of

" edge weights

ity O

- centrality indices

15



Network stabillity

Two main questions:
* |s edge 3—4 meaningtully larger than edge 3—117

16



Network stabillity

Two main questions:
* |s edge 3—4 meaningtully larger than edge 3—117
* |s node 17 substantially more central than node 167

Centrality




EDGE WEIGHT STABILITY



Bootstrapping edge weights




Bootstrapping edge weights

- |s edge 3—4 (0.42) stronger than edge 3—11 (0.14)7
- Obtain Cl by bootstrapping

18



Bootstrapping edge weights

- |s edge 3—4 (0.42) stronger than edge 3—11 (0.14)7
- Obtain Cl by bootstrapping

18



Boostrapping edge weights

- The edge weights of your sample are your point estimates
- Copy pasting your sample to create a ‘population

- Take random samples (same size as original sample) from the
‘bootstrap’ population

- Estimate whatever you were estimating (edge weights)
- This gives you a distribution of estimated values and

- a confidence interval around your point estimate!

19



Edges

0.25

0.00

Edge weights

0.25

0.50
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Edges

0.14

0.42

0.25

0.00

Edge weights

0.25

0.50
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Edges

edge

0.14

0.42

0.25

0.00

Edge weights

0.25

0.50
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Most edges are not
meaningfully different from
each other because their Cls
overlap.

This is not really surprising: we
are estimating 136 edge
parameters with only 180
observations.

24



CENTRALITY STABILITY



Subset bootstrap

We now want to understand how stable the estimation of
centrality indices is: e.q., is centralty of node 17 (1.16)
substantially higher than the centrality of node 16 (0.99)

Centrality

26



Subset bootstrap

27



Subset bootstrap
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Subset bootstrap

Unfortunately, bootstrapping Cls around centrality
estimates Is not possible

Costenbader, E., & Valente, T. W. (2003)
DOI: 10.1016/S0378-8733(03)00012-1

27



Subset bootstrap

TN




Subset bootstrap

1. Obtain centrality for data (s17 > s3 > s16... |

M‘Wq”“
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Subset bootstrap

1. Obtain centrality for data (s17 > s3 > s16...)

TN




Subset bootstrap

1. Obtain centrality for data (s17 > s3 > s16...)
2. Subset data with 90% of the people

tHythyt s
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Subset bootstrap

1. Obtain centrality for data (s17 > s3 > s16...)
2. Subset data with 90% of the people

QMWM

3. Obtain centrality for 90% subset (s17 > s7 > s4...)
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Subset bootstrap

1. Obtain centrality for data (s17 > s3 > s16...)
2. Subset data with 90% of the people

MWQM

3. Obtain centrality for 90% subset (s17 > s7 > s4...)
4. Subset data 80% of the people
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Subset bootstrap

1. Obtain centrality for data (s17 > s3 > s16...)
2. Subset data with 90% of the people

MWQM

3. Obtain centrality for 90% subset (s17 > s7 > s4...)
4. Subset data 80% of the people
5. Obtain centrality for 80% subset (s16 > s7 > s3...)
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Subset bootstrap

1.

Obtain centrality for data (s17 > s3 > s16...)

2. Subset data with 90% of the people

MWQM

3.
4.
5.

Obtain centrality for 90% subset (s17 > s7 > s4...)
Subset data 80% of the people
Obtain centrality for 80% subset (s16 > s7 > s3...)

28



Subset bootstrap

So what we get is centrality for

~ull data

N -10% (90%) data

N -20% (80%) data

N -30% (70%) data

N -40% (60%) data

N -50% (50%) data
(40%)
(30%)
(20%)
(10%)

N -60% (40%) data
N -70% (30%) data
N -80% (20%) data
N -90%

10%) data

(S

w 0O 0 u 0 u om

(
(
(
(
(
(
(
(
(

17 >s3 > s16...)
17 >s7>54...)
16 > s7 > s3...)
17 >s3 > s16...)
1/ > 83 > s16...
16 > s3> s7/...)
17 >s3>s7..)
17 >s3 > s16...)
s3> sb>sl17...)
s/ >s3>s16...)

)
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Subset bootstrap

1.0

o
O,
1

©
o

Average correlation with original sample

|
o
(8]

1

-1.0-

90%  80%  70%  60%  50%
Sampled people

40%

30%

type

-e= strength
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Average correlation with original sample

Subset bootstrap

We can also subset nodes instead of people

1.0

0.5+

0.0

=-1.01

90%

80%

70%  60%  50%
Sampled people

40%

30%

1.0+

0.5+

0.0

1.0+

90%

80%

70%

60%  50%
Sampled nodes

40%

30%

20%

type

=o= strength
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Take home message

* For most statistical parameters or test statistics, it is very
useful to understand how precisely they are estimated

— Different ways to do that, one way is to bootstrap confidence
intervals around the point estimates
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Take home message

* For most statistical parameters or test statistics, it is very
useful to understand how precisely they are estimated

— Different ways to do that, one way is to bootstrap confidence
intervals around the point estimates

* |nvestigating the stability of network parameters like
edge weights will help us to understand how likely our
networks generalize
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Take home message

* For most statistical parameters or test statistics, it is very
useful to understand how precisely they are estimated

— Different ways to do that, one way is to bootstrap confidence
intervals around the point estimates

* |nvestigating the stability of network parameters like
edge weights will help us to understand how likely our
networks generalize

* pbootnet is a very first & preliminary step

32



Network stability

Thanks to EiIko Fried!

Epskamp, S., Borsboom, D., & Fried, E. |. (2016). Estimating Psychological
Networks and their Stability: a Tutorial Paper. arXiv:1604.08462 [stat]. Retrieved
from http://arxiv.org/abs/1604.08462

33


http://arxiv.org/abs/1604.08462

Network comparison

Can you spot the differences?

34



Network comparison

* Comparing network structures relied mainly on visual inspection

* There was no test to directly statistically assess the difference

between two networks

© 2015 Americas Peychological Asaxistion
0033 295X/16312.00 e s ceg/10. 103740039802

Assessment
Assessing Temporal Emotion Dynamics © T Aurty 2016 . .
Usi Negtw kP Y ';":S;ﬂﬁlﬁi“ Toward a Formalized Account of Attitudes:

sages issions nav N

ing orks D0 17T ekks09 The Causal Attitude Network (CAN) Model
SSAGE
Jonas Dalege Denny Borsboom and Frenk van Harreveld
Laura F. Bring !, Madeline L. Pe', ie Vissers', Eva Ceulemans', University of Amsterdam and University of Hamburg University of Amsterdam
Denny Borsboom?”, Wolf Vanpaemel', Francis Tuerlinckx', and Peter Kuppens'
Helma van den Berg Mark Conner
TNO (Netherlands Organization for Applied Scientific University of Leeds

Research), Soesterberg, the Netherlands

@o

Han L. J. van der Maas
University of Amsterdam

Ronald Reagan Walter Mondale

(ie.

emation drcumplex from whh they were selected

High neuroticism dataset 1

Overall Affect

Psychological Medicine (2015), 45, 2375-2387. © Cambridge University Press 2015
d0iz10.1017/50033291715000331 ORIGINAL ARTICLE

Exploring the underlying structure of mental
disorders: cross-diagnostic differences and
similarities from a network perspective using both a
top-down and a bottom-up approach e 8

J. T. W. Wigman?*, J. van Os*, D. 4, K. J. 7, S. Ep p?, A. Klippel?,
MERGE?t, W. Viechtbauer?, I. Myin-Germeys” and M. Wichers'?
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Comparing networks

Data generating

mechanism

@ depressed

@ interest

@ concentration

. weight/appetite
@ vorthiessness

. psychomotor

. suicidal

. depressed

. concentration
. weight/appetite
@ worthlessness
. psychomotor

’ suicidal

. depressed

. interest

. concentration

. weight/appetite
@ vorthlessness

. psychomotor

. suicidal

depressed

o
. interest
o

concentration

. weight/appetite
@ vorthlessness

. psychomotor

. suicidal

. depressed

O interest

. concentration

@ cepressed

. interest

. concentration

@ vorthlessness
. psychomotor

' suicidal

@ <

@ vorthiessness
. psychomotor

. suicidal

. depressed

. interest

. concentration

. weight/appetite
@ worthlessness

. psychomotor

. suicidal

. depressed

. interest
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. weight/appetite
@ vorthiessness
. psychomotor

. suicidal

. depressed

. interest

. concentration

. weight/appetite
@ worthlessness

. psychomotor

. suicidal

. depressed

O interest

. concentration
. weight/appetite
@ worthlessness
. psychomotor

. suicidal

. depressed

@ interest

@ concentration

. weight/appetite
@ wvorthlessness

. psychomotor

' suicidal

@ cepressed

. interest

. concentration

' weight/appetite
@ vorthlessness

. psychomotor

. suicidal




Comparing networks

One data generating mechanism

Iy

© © Q 9o O
AANAAA

@ depressed @ cepressed @ depressed @ depressed @ depressed @ cepressed @ depressed @ depressed @ depressed @ cepressed
interest interest interest interest interest
@ concentration @ concentration o @ concentration @ concentation @ concentration @ concentation
@ weighvappetite @ veightiappetite @ veighvappetite @ veightappetite
@ vorthlessness @ vorthlessness @ vorthlessness @ vorthlessness @ vorthiessness @ worthlessness @ vorthlessness @ vorthlessness @ vorthiessness @ vorthlessness

@ psychomotor @ psychomotor @ psychomotor @ psychomotor @ psychomotor @ psychomotor @ psychomotor @ psychomotor @ psychomotor @ psychomotor

o o
@ suicidal @ suicidal @ suicidal @ suicidal @ suicidal @ sucidal @ suicidal @ suicidal @ suicidal @ sucical @ suicidal @ suicidal

Difference = “smal”




Comparing networks

LXXTXXX

@ vortiessness
Qe
scical

@ sopossas

-
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@ vorressness
B et

© somessed

@ vortessiess @ vortiessiness
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S
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o
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>0

@ depressed

@ interest

@ concentration

@ cepressed

@ interest
o

@ depressed

@ interest
o

@ vorthlessness
@ psychomotor

@ suicidal

@ vorthlessness
@ psychomotor

@ suicidal

@ vorthlessness
@ psychomotor

@ suicidal

@ depressed

@ interest

@ concentration

@ depressed

@ interest
o

@ depressed

nerest
o

@ vorthlessness

@ rsychomotor

@ suicidal

@ vorthiessness

@ worthlessness

@ suicidal

o
@ suicidal

Difference = “large

anisms

© somossed

@ wortiessness
@ prychomoter
scdl

@ vortiessrass @ wortiessness
@ poychomotr @ pechomoter
s

aucidal

@ doressod @ copressea

@ vortiessress @ vorhiessness
@ pevcromoi - —

suicidal

@ conconvaton
@ vogrunopatte
@ vorhessness
@ pevcramotr

@ sl

>0

@ depressed

O interest

@ concentration

@ weighvappetite
@ worthlessness

@ psychomotor

@ suicidal

@ depressed

@ interest

@ concentration

@ weightappetite
@ vorthlessness

@ psychomotor

@ suicidal

@ depressed

@ interest

@ concentration

@ depressed

@ interest

@ concentration

o
@ psychomotor

©® sucidal

@ psychomotor

@ suicidal

@ depressed

© interest

@ concentration

@ veighvappetite
@ worthiessness

@ psychomotor

@ suicidal

@ depressed
@ interest

@ concentration
@ weighvappetite
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Comparing networks
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Comparing networks

* When is difference ‘large’?
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Comparing networks

* When is difference ‘large’?

- When it is larger than you would expect under the null
hypothesis

1 Two data generating mechanisms

:




Comparing networks

* When is difference ‘large’?

- When it is larger than you would expect under the null
hypothesis

* What is the null hypothesis?

1 Two data generating mechanisms

:




Comparing networks

* When is difference ‘large’?

- When it is larger than you would expect under the null
hypothesis

* What is the null hypothesis?

- All individuals come from the same population (with
only one data generating mechanism)

1 Two data generating mechanisms

)
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Comparing networks

* When is difference ‘large’?

- When it is larger than you would expect under the null
hypothesis

* What is the null hypothesis?

1 Two data generating mechanisms

)

- Allindividuals come from the same population (with %ﬁé\?}}% %é/é\%\g%
only one data generating mechanism) BEEEE] EE EEE|

21
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* What do you expect under the null hypothesis?

s Difference = “large” .



Comparing networks

* When is difference ‘large’?

- When it is larger than you would expect under the null
hypothesis

* What is the null hypothesis?

1 Two data generating mechanisms

- All individuals come from the same population (with
only one data generating mechanism)

1

§

* What do you expect under the null hypothesis?

large”
- It doesn’t matter how individuals are arranged



Comparing networks

* When is difference ‘large’?

- When it is larger than you would expect under the null
hypothesis

* What is the null hypothesis?

- All individuals come from the same population (with
only one data generating mechanism)

* What do you expect under the null hypothesis?

- It doesn’t matter how individuals are arranged

e Let’s see what happens if we repeatedly
(randomly) rearrange individuals and calculate the
‘difference’

)

Two data generating mechanisms

larger |



Comparing networks

%% %%%%




Comparing networks

* Life example?
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Network Comparison Test

Observed data and networks

Group A Group B

/\< . A observed difference

u B W N B
=

O O 00 N O
—

K NCT IS implemented in R

* Currently suited for binary and
continuous data

 Networks are estimated with IsingFit
| (binary data; Van Borkulo et al., 2014) or
with EBICglasso (continous data;

| Epskamp et al., 2012)




Network Comparison Test

Observed data and networks

Group A Group B

3 /\< : A observed difference
8

IS
10 C.

u B W N B

Permuted data and networks

Group A Group B’ Null hypothesis
; . * It doesn’t matter how you
. coE rearrange individuals
> Il 8 ' e Each individual stems from the
10 : 6 same population
9 \ 3 | ]
5 8 56
7 1
+ Il > Il



Network Comparison Test

Observed data and networks

Group A Group B

/\< . A observed difference

u B W N B
=

O O 00 N O
—

Permuted data and networks

‘Group A’ ‘Group B’
9 l B )
7 6
> -
10 ’ -1
5 8 .

——

10 . 6 -
9 \ 3 ~ B
3 = i E< | | | | |
. | : I ) 0 5 10 15 20

Reference distribution



Network Comparison Test

Observed data and networks

Group A Group B

u B W N B
|

O O 00 N O
0\.

Permuted data and networks

‘Group A’ ‘Group B’
9 l B )
7 6
: +« -
10 ’ -1
5 8 .

S

10 , 6 -
9 3
s \ 8 E< :
7 1
+ N 2 I )

A observed difference

A observed difference

0 5 10 15 20
Reference distribution



Network Comparison Test

Observed data and networks . _
Tests on three invariance hypotheses:

1 c 1. Network structure
. . /‘< ' 2. Global strength

: 1 B 3. Edge strength

5 10 o

Permuted data and networks

‘Group A’ ‘Group B’

9 3
7 XZ 6
2-. 4
10 -1
5- 8

» 6
9 3 1l
5-lﬁ<\8 .
7 1
4 Y 0 5 10 15 20

Reference distribution

A observed difference




Network Comparison Test

1. Network structure invariance hypothesis

» structure is completely identical o+
across subpopulations I

» distance measure (M) is based on - | - |01
the maximum or L. norm R

* similar to testing whether two
distributions are similar (as in the
Kolmogorov—Smirnov test) Dii=|A1; - A2ij

M(G1,Gz)= max (D))



Network Comparison Test

2. Global strength invariance hypothesis

* overall level of connectivity is
identical across subpopulations

* distance measure (S) is based on - - 01 - - 0
difference in global strength

S(G1,G2)= |2 |Anj| - 21A24])



Network Comparison Test

3. Edge strength invariance hypothesis

- a specific edge is identical across . 03 E oo
subpopulations N

e distance measure (E) is based on )
difference in connection strength

Dyj = |A1j - A2y

EBi©".Bi)=1p¢" - B

Bi: a particular edge



Network Comparison Test

1. Network structure invariance hypothesis

e structure is completely identical across
subpopulations

e distance measure (M) is based on the
maximum or L. norm

2. Global strength invariance hypothesis

e overall level of connectivity is identical
across subpopulations

e distance measure (S) is based on
difference in global strength

3. Edge strength invariance hypothesis

e a specific edge is identical across
subpopulations

e distance measure (E) is based on
difference in connection strength



Real data

NCT(datamen,datawomen, binary.data=TRUE, it=1000, test.edges=TRUE, edges=list(c(2,11)))

Female N=709 Male N=351

Netherlands Study of Depression and Anxiety (NESDA; Penninx et al., 2008)



Real data

Summary
* Network structure: no difference (p=.251)

* Global strength: no difference (p=.909)

 Edge strength: sui-int significantly stronger in
network of males (p=.027)



Mixed graphical models

How many times ... ?

52



Mixed graphical models

We currently fit networks with either binary or gaussian data

@.;

@ \/
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Mixed graphical models

But psychological data are often mixed

Which medication ... ?

How many times ... ?

Gender

|Q-Score

54



MGM

* Novel R package mgm (mixed graphical models) allows us to fix
mixed data
— By Jonas Haslbeck, UvA, http://jmbh.github.io/papers_software

 Further reading:

— Post 1: http://jmbh.github.io/Estimation-of-mixed-graphical-models/

— Post 2: http://jmbh.github.io/Interactions-between-categorical-Variables-
in-mixed-graphical-models/

— Papers on Jonas' homepage
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MGM

Call packages and get example

library("mgm") # Estimate mixed graphical models
library("httr") # For GET () function to download data

url='http://jmbh.github.io/figs/efpsa workshop/
autism datalist.RDS' GET(url, write disk
"autism datalist.RDS", overwrite=TRUE))

Autism data <- readRDS('autism datalist.RDS')

56



MGM

Autism data$colnames # variable names
Autism data$Stype # define variable types
Autism data$lev # define variables level

ITISM L
"Gender"
"Age diagnosis” "Openness about Diagnosis”
"Success selfrating” "wWell being"
"Integration in Society" "No of family members with autism”
"No of Comorbidities” "No of Physical Problems™
“"No of Treatments"” "No of Medications”
“"No of Care Units"” "Type of Housing"
"No of unfinished Educations” "Type of work"
"Workinghours" "No of Interests”
"No of Social Contacts” "Good Characteristics due to Autism”
"No of Transition Problems™ "Satisfaction: Treatment"”
"Satisfaction: Medication" "Satisfaction: Care"
"Satisfaction: Education” "Satisfaction: Work"
"Satisfaction: Social Contacts” "Age"

m_aataytype agerine variablie tTtypes
T LA D IR T TR TN TR T D T R T R T BCOORT__RT RT__ BT WY __ WY RT__PT BT BT RU__ BT BT __PT R RN WY WY __PT  RT__ R0 RN__ BT RR__PT  RR__ R0 RN R0 RP__ET R0 W

c" "c" "p" "p" "p" "p" "p" "p" "c" "p" "c" "g" "p" "p" "p

utism_data S =

2 O e -

1] 2112153111111214111111111131




MGM

Estimate & visualize network

fitMGM <- mgmfit (Autism data$data, Autism data$type,
Autism data$lev, d=2)

ggraph (fitMGMSwad]j, nodeNames=Autism data$colnames,

layout='spring', edge.color=fitMGM$edgecolor,

legend.cex=.
3, vsize=3, legend.cex=1)
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CONODOEWN -

: Gender

1Q

. Age diagnosis

: Openness about Diagnosis

. Success selfrating

: Well being

. Integration in Society

: No of family members with autism
: No of Comorbidities

: No of Physical Problems

: No of Treatments

: No of Medications

: No of Care Units

: Type of Housing

: No of unfinished Educations
: Type of work

: Workinghours

: No of Interests

- No of Social Contacts

: Good Characteristics due to Autism
- No of Transition Problems

. Satisfaction: Treatment

. Satisfaction: Medication

. Satisfaction: Care

. Satisfaction: Education

. Satisfaction: Work

. Satisfaction: Social Contacts
: Age
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Practical

o Open Assignment_Day3_Part3.pdf
o Just follow the steps!

o It you go through the exercises quickly, you
can try stability analysis or network
comparison on your own data (if you data is
cross-sectional)

v/

®

“

S ——
-
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Recap of Day 3

Today you have learned

o about conditional (in)dependence

when a node is connected to another node it
means that they are still associated after
controlling for all other variables

e about advanced network estimation

regularization to find optimal balance between
parsimony and goodness of fit

e about network stability, network
comparison, mix graphical models
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Literature

About network stability:

Epskamp, S., Borsboom, D., & Fried, E. |. (2016). Estimating Psychological Networks and
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