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• 515 patients with MDD at baseline: 
those with persistent MDD (n = 253) 
and those with remitted MDD (n = 
262) 

• Networks estimated on 11 DSM 
criteria: from IDS at baseline 

• Comparison of networks: Network 
Comparison Test

Van Borkulo, Boschloo, Borsboom, Penninx, Waldorp, Schoevers. 
Association of symptom network structure with the course of depression. 

JAMA Psychiatry. 2015;72(12):1219-1226. 
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Network estimation

• Advanced method: L1-regularized partial 
correlations

• Regularization: to find optimal balance 
between parsimony and goodness of fit 
of the network 

• Low false positive rate

Epskamp et al., 2012

Van Borkulo et al., 2014

Design of study



Network comparison

• With newly developed Network Comparison 
Test (NCT) 

• Permutation test 

• NCT performs well in a range of circumstances 

Type I error rate is close to the nominal significance level 

Power is sufficiently high if sample size and/or difference 
between networks are large enough

Van Borkulo, Boschloo, Kossakowski, Tio, Schoevers, Borsboom, Waldorp.  
Comparing network structures: A permutation test. (in prep).
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But…



Are results confounded by baseline severity? 
Two strategies to tackle this issue:

1. Match number of 
patients with same IDS 
sum score 

2. Matching by partialing 
out severity
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More results

4 centrality measures
• strength 
• closeness 
• betweenness 
• eigenvector centrality

From Van Bork, Van Borkulo, Waldorp, Cramer & Borsboom.  
Network models for clinical psychology. (submitted)

Focus on largest difference
• with bootstrapping of centrality 

measures 
• effect size is based on the difference 

in means



More results
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Discussion
Conclusion
• Patterns in symptom associations seem predictive for the course of MDD 

More pronounced associations between symptoms may be an 
important determinant of persistence in MDD 

• Controlling for difference in baseline severity confirmed main results 

Limitations
• It is currently unclear what this means at the level of an individual patient 
• Analysis at individual level can (theoretically) result in radically different 

network (Simpson’s paradox) 

Future
• Investigate relationship between networks at group and individual level



Thanks to…

http://cvborkulo.com 
cvborkulo@gmail.com

Van Borkulo, Boschloo, Borsboom, Penninx, Waldorp, Schoevers. Association 
of symptom network structure with the course of depression. JAMA Psychiatry. 

2015;72(12):1219-1226. 
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